Yryx with Open Texts

LINEAR ALGEBRA with Applications

Open Edition

Adapted for

Emory University

Math 221

Linear Algebra

Sections 1 & 2

Lectured and adapted by

Le Chen

April 15, 2021

le.chen@emory.edu

Course page

http://math.emory.edu/~lchen41/teaching/2021 Spring Math221

by W. Keith Nicholson Creative Commons License (CC BY-NC-SA)

Contents

1	\mathbf{Sys}	ystems of Linear Equations				
	1.1	Solutions and Elementary Operations	6			
	1.2	Gaussian Elimination	16			
	1.3	Homogeneous Equations	28			
	Sup	plementary Exercises for Chapter 1	37			
2	Ma	trix Algebra	39			
	2.1	Matrix Addition, Scalar Multiplication, and Transposition	40			
	2.2	Matrix-Vector Multiplication	53			
	2.3	Matrix Multiplication	72			
	2.4	Matrix Inverses	91			
	2.5	Elementary Matrices	109			
	2.6	Linear Transformations	119			
	2.7	LU-Factorization	135			
3	Det	Determinants and Diagonalization				
	3.1	The Cofactor Expansion	148			
	3.2	Determinants and Matrix Inverses	163			
	3.3	Diagonalization and Eigenvalues	178			
	Sup	plementary Exercises for Chapter 3	201			
4	Vec	etor Geometry	203			
	4.1	Vectors and Lines	204			
	4.2	Projections and Planes	223			
	4.3	More on the Cross Product	244			
	4.4	Linear Operators on \mathbb{R}^3	251			
	Sup	plementary Exercises for Chapter 4	260			
5	Vec	etor Space \mathbb{R}^n	263			
	5.1	Subspaces and Spanning	264			
	5.2	Independence and Dimension	273			
	5.3	Orthogonality	287			
	5.4	Rank of a Matrix	297			

4 ■ CONTENTS

	5.5	Similarity and Diagonalization	307
	Supp	plementary Exercises for Chapter 5	320
6	Vec	tor Spaces	321
	6.1	Examples and Basic Properties	322
	6.2	Subspaces and Spanning Sets	333
	6.3	Linear Independence and Dimension	342
	6.4	Finite Dimensional Spaces	354
	Supp	plementary Exercises for Chapter 6	364
7	Line	ear Transformations	365
	7.1	Examples and Elementary Properties	366
	7.2	Kernel and Image of a Linear Transformation	374
	7.3	Isomorphisms and Composition	385
8	Ort	hogonality	399
	8.1	Orthogonal Complements and Projections	400
	8.2	Orthogonal Diagonalization	410
	8.3	Positive Definite Matrices	421
	8.4	QR-Factorization	427
	8.5	Computing Eigenvalues	431
	8.6	The Singular Value Decomposition	436
		8.6.1 Singular Value Decompositions	436
		8.6.2 Fundamental Subspaces	442
		8.6.3 The Polar Decomposition of a Real Square Matrix	445
		8.6.4 The Pseudoinverse of a Matrix	447

4.3 More on the Cross Product

The cross product $\mathbf{v} \times \mathbf{w}$ of two \mathbb{R}^3 -vectors $\mathbf{v} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$ was defined in Section 4.2 where we observed that it can be best remembered using a determinant:

$$\mathbf{v} \times \mathbf{w} = \det \begin{bmatrix} \mathbf{i} & x_1 & x_2 \\ \mathbf{j} & y_1 & y_2 \\ \mathbf{k} & z_1 & z_2 \end{bmatrix} = \begin{vmatrix} y_1 & y_2 \\ z_1 & z_2 \end{vmatrix} \mathbf{i} - \begin{vmatrix} x_1 & x_2 \\ z_1 & z_2 \end{vmatrix} \mathbf{j} + \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} \mathbf{k}$$
(4.3)

Here $\mathbf{i} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{j} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, and $\mathbf{k} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ are the coordinate vectors, and the determinant is

expanded along the first column. We observed (but did not prove) in Theorem 4.2.5 that $\mathbf{v} \times \mathbf{w}$ is orthogonal to both \mathbf{v} and \mathbf{w} . This follows easily from the next result.

If
$$\mathbf{u} = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$, then $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \det \begin{bmatrix} x_0 & x_1 & x_2 \\ y_0 & y_1 & y_2 \\ z_0 & z_1 & z_2 \end{bmatrix}$.

<u>Proof.</u> Recall that $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$ is computed by multiplying corresponding components of \mathbf{u} and $\mathbf{v} \times \mathbf{w}$ and then adding. Using equation (4.3), the result is:

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = x_0 \left(\left| \begin{array}{cc} y_1 & y_2 \\ z_1 & z_2 \end{array} \right| \right) + y_0 \left(-\left| \begin{array}{cc} x_1 & x_2 \\ z_1 & z_2 \end{array} \right| \right) + z_0 \left(\left| \begin{array}{cc} x_1 & x_2 \\ y_1 & y_2 \end{array} \right| \right) = \det \left[\begin{array}{cc} x_0 & x_1 & x_2 \\ y_0 & y_1 & y_2 \\ z_0 & z_1 & z_2 \end{array} \right]$$

where the last determinant is expanded along column 1.

The result in Theorem 4.3.1 can be succinctly stated as follows: If \mathbf{u} , \mathbf{v} , and \mathbf{w} are three vectors in \mathbb{R}^3 , then

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \det \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} \end{bmatrix}$$

where $[\mathbf{u} \ \mathbf{v} \ \mathbf{w}]$ denotes the matrix with \mathbf{u} , \mathbf{v} , and \mathbf{w} as its columns. Now it is clear that $\mathbf{v} \times \mathbf{w}$ is orthogonal to both \mathbf{v} and \mathbf{w} because the determinant of a matrix is zero if two columns are identical.

Because of (4.3) and Theorem 4.3.1, several of the following properties of the cross product follow from properties of determinants (they can also be verified directly).

Theorem 4.3.2

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} denote arbitrary vectors in \mathbb{R}^3 .

1. $\mathbf{u} \times \mathbf{v}$ is a vector.

6. $(k\mathbf{u}) \times \mathbf{v} = k(\mathbf{u} \times \mathbf{v}) = \mathbf{u} \times (k\mathbf{v})$ for any scalar k.

2. $\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and \mathbf{v} .

3. $\mathbf{u} \times \mathbf{0} = \mathbf{0} = \mathbf{0} \times \mathbf{u}$.

7. $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w}).$

4. $\mathbf{u} \times \mathbf{u} = \mathbf{0}$.

8. $(\mathbf{v} + \mathbf{w}) \times \mathbf{u} = (\mathbf{v} \times \mathbf{u}) + (\mathbf{w} \times \mathbf{u})$.

5. $\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$.

<u>Proof.</u> (1) is clear; (2) follows from Theorem 4.3.1; and (3) and (4) follow because the determinant of a matrix is zero if one column is zero or if two columns are identical. If two columns are interchanged, the determinant changes sign, and this proves (5). The proofs of (6), (7), and (8) are left as Exercise 4.3.15.

We now come to a fundamental relationship between the dot and cross products.

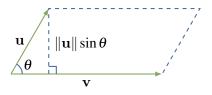
Theorem 4.3.3: Lagrange Identity¹²

If \mathbf{u} and \mathbf{v} are any two vectors in \mathbb{R}^3 , then

$$\|\mathbf{u} \times \mathbf{v}\|^2 = \|\mathbf{u}\|^2 \|\mathbf{v}\|^2 - (\mathbf{u} \cdot \mathbf{v})^2$$

Proof. Given **u** and **v**, introduce a coordinate system and write $\mathbf{u} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$ in

component form. Then all the terms in the identity can be computed in terms of the components. The detailed proof is left as Exercise 4.3.14.


An expression for the magnitude of the vector $\mathbf{u} \times \mathbf{v}$ can be easily obtained from the Lagrange identity. If $\boldsymbol{\theta}$ is the angle between \mathbf{u} and \mathbf{v} , substituting $\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \boldsymbol{\theta}$ into the Lagrange identity gives

$$\|\mathbf{u} \times \mathbf{v}\|^2 = \|\mathbf{u}\|^2 \|\mathbf{v}\|^2 - \|\mathbf{u}\|^2 \|\mathbf{v}\|^2 \cos^2 \theta = \|\mathbf{u}\|^2 \|\mathbf{v}\|^2 \sin^2 \theta$$

using the fact that $1 - \cos^2 \theta = \sin^2 \theta$. But $\sin \theta$ is nonnegative on the range $0 \le \theta \le \pi$, so taking the positive square root of both sides gives

$$\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta$$

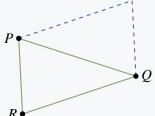
¹²Joseph Louis Lagrange (1736–1813) was born in Italy and spent his early years in Turin. At the age of 19 he solved a famous problem by inventing an entirely new method, known today as the calculus of variations, and went on to become one of the greatest mathematicians of all time. His work brought a new level of rigour to analysis and his *Mécanique Analytique* is a masterpiece in which he introduced methods still in use. In 1766 he was appointed to the Berlin Academy by Frederik the Great who asserted that the "greatest mathematician in Europe" should be at the court of the "greatest king in Europe." After the death of Frederick, Lagrange went to Paris at the invitation of Louis XVI. He remained there throughout the revolution and was made a count by Napoleon.

Figure 4.3.1

This expression for $\|\mathbf{u} \times \mathbf{v}\|$ makes no reference to a coordinate system and, moreover, it has a nice geometrical interpretation. The parallelogram determined by the vectors \mathbf{u} and \mathbf{v} has base length $\|\mathbf{v}\|$ and altitude $\|\mathbf{u}\|\sin\theta$ (see Figure 4.3.1). Hence the area of the parallelogram formed by \mathbf{u} and \mathbf{v} is

$$(\|\mathbf{u}\|\sin\theta)\|\mathbf{v}\| = \|\mathbf{u}\times\mathbf{v}\|$$

This proves the first part of Theorem 4.3.4.


Theorem 4.3.4

If \mathbf{u} and \mathbf{v} are two nonzero vectors and $\boldsymbol{\theta}$ is the angle between \mathbf{u} and \mathbf{v} , then

- 1. $\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta =$ the area of the parallelogram determined by \mathbf{u} and \mathbf{v} .
- 2. \mathbf{u} and \mathbf{v} are parallel if and only if $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.

Proof of (2). By (1), $\mathbf{u} \times \mathbf{v} = \mathbf{0}$ if and only if the area of the parallelogram is zero. By Figure 4.3.1 the area vanishes if and only if \mathbf{u} and \mathbf{v} have the same or opposite direction—that is, if and only if they are parallel.

Example 4.3.1

Find the area of the triangle with vertices P(2, 1, 0), Q(3, -1, 1), and R(1, 0, 1).

Solution. We have
$$\overrightarrow{RP} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$
 and $\overrightarrow{RQ} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$. The

 $R \leftarrow$ area of the triangle is half the area of the parallelogram (see the diagram), and so equals $\frac{1}{2} || \overrightarrow{RP} \times \overrightarrow{RQ} ||$. We have

$$\overrightarrow{RP} \times \overrightarrow{RQ} = \det \begin{bmatrix} \mathbf{i} & 1 & 2 \\ \mathbf{j} & 1 & -1 \\ \mathbf{k} & -1 & 0 \end{bmatrix} = \begin{bmatrix} -1 \\ -2 \\ -3 \end{bmatrix}$$

so the area of the triangle is $\frac{1}{2} \| \overrightarrow{RP} \times \overrightarrow{RQ} \| = \frac{1}{2} \sqrt{1+4+9} = \frac{1}{2} \sqrt{14}$.

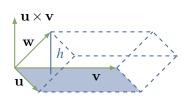


Figure 4.3.2

If three vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} are given, they determine a "squashed" rectangular solid called a **parallelepiped** (Figure 4.3.2), and it is often useful to be able to find the volume of such a solid. The base of the solid is the parallelogram determined by \mathbf{u} and \mathbf{v} , so it has area $A = \|\mathbf{u} \times \mathbf{v}\|$ by Theorem 4.3.4. The height of the solid is the length h of the projection of \mathbf{w} on $\mathbf{u} \times \mathbf{v}$. Hence

$$h = \left| \frac{\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v})}{\|\mathbf{u} \times \mathbf{v}\|^2} \right| \|\mathbf{u} \times \mathbf{v}\| = \frac{|\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v})|}{\|\mathbf{u} \times \mathbf{v}\|} = \frac{|\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v})|}{A}$$

Thus the volume of the parallelepiped is $hA = |\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v})|$. This proves

Theorem 4.3.5

The volume of the parallelepiped determined by three vectors \mathbf{w} , \mathbf{u} , and \mathbf{v} (Figure 4.3.2) is given by $|\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v})|$.

Example 4.3.2

Find the volume of the parallelepiped determined by the vectors

$$\mathbf{w} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, \ \mathbf{u} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \ \mathbf{v} = \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$$

Solution. By Theorem 4.3.1,
$$\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v}) = \det \begin{bmatrix} 1 & 1 & -2 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} = -3$$
. Hence the volume is $|\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v})| = |-3| = 3$ by Theorem 4.3.5.

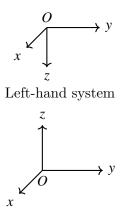
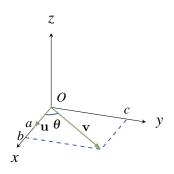


Figure 4.3.3

Right-hand system

We can now give an intrinsic description of the cross product $\mathbf{u} \times \mathbf{v}$. Its magnitude $\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta$ is coordinate-free. If $\mathbf{u} \times \mathbf{v} \neq \mathbf{0}$, its direction is very nearly determined by the fact that it is orthogonal to both \mathbf{u} and \mathbf{v} and so points along the line normal to the plane determined by \mathbf{u} and \mathbf{v} . It remains only to decide which of the two possible directions is correct.


Before this can be done, the basic issue of how coordinates are assigned must be clarified. When coordinate axes are chosen in space, the procedure is as follows: An origin is selected, two perpendicular lines (the x and y axes) are chosen through the origin, and a positive direction on each of these axes is selected quite arbitrarily. Then the line through the origin normal to this x-y plane is called the z axis, but there is a choice of which direction on this axis is the positive one. The two possibilities are shown in Figure 4.3.3, and it is a standard convention that cartesian coordinates are always **right-hand coor-**

dinate systems. The reason for this terminology is that, in such a system, if the z axis is grasped in the right hand with the thumb pointing in the positive z direction, then the fingers curl around from the positive x axis to the positive y axis (through a right angle).

Suppose now that **u** and **v** are given and that θ is the angle between them (so $0 \le \theta \le \pi$). Then the direction of $\|\mathbf{u} \times \mathbf{v}\|$ is given by the right-hand rule.

Right-hand Rule

If the vector $\mathbf{u} \times \mathbf{v}$ is grasped in the right hand and the fingers curl around from \mathbf{u} to \mathbf{v} through the angle $\boldsymbol{\theta}$, the thumb points in the direction for $\mathbf{u} \times \mathbf{v}$.

Figure 4.3.4

To indicate why this is true, introduce coordinates in \mathbb{R}^3 as follows: Let **u** and **v** have a common tail O, choose the origin at O, choose the x axis so that **u** points in the positive x direction, and then choose the y axis so that **v** is in the x-y plane and the positive y axis is on the same side of the x axis as **v**. Then, in this system, **u** and **v** have

component form
$$\mathbf{u} = \begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} b \\ c \\ 0 \end{bmatrix}$ where $a > 0$ and $c > 0$.

The situation is depicted in Figure 4.3.4. The right-hand rule asserts that $\mathbf{u} \times \mathbf{v}$ should point in the positive z direction. But our definition of $\mathbf{u} \times \mathbf{v}$ gives

$$\mathbf{u} \times \mathbf{v} = \det \begin{bmatrix} \mathbf{i} & a & b \\ \mathbf{j} & 0 & c \\ \mathbf{k} & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ ac \end{bmatrix} = (ac)\mathbf{k}$$

and $(ac)\mathbf{k}$ has the positive z direction because ac > 0.

Exercises for 4.3

Exercise 4.3.1 If i, j, and k are the coordinate vectors, verify that $i \times j = k$, $j \times k = i$, and $k \times i = j$.

Exercise 4.3.2 Show that $\mathbf{u} \times (\mathbf{v} \times \mathbf{w})$ need not equal $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$ by calculating both when

$$\mathbf{u} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \ \text{and} \ \mathbf{w} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Exercise 4.3.3 Find two unit vectors orthogonal to both \mathbf{u} and \mathbf{v} if:

a.
$$\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}$$

b.
$$\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$$

b.
$$\pm \frac{\sqrt{3}}{3} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$$
.

Exercise 4.3.4 Find the area of the triangle with the following vertices.

a.
$$A(3, -1, 2), B(1, 1, 0), \text{ and } C(1, 2, -1)$$

b.
$$A(3, 0, 1), B(5, 1, 0), \text{ and } C(7, 2, -1)$$

c.
$$A(1, 1, -1)$$
, $B(2, 0, 1)$, and $C(1, -1, 3)$

d.
$$A(3, -1, 1), B(4, 1, 0), \text{ and } C(2, -3, 0)$$

b. 0

d.
$$\sqrt{5}$$

Exercise 4.3.5 Find the volume of the parallelepiped determined by w, u, and v when:

a.
$$\mathbf{w} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$, and $\mathbf{u} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$

b.
$$\mathbf{w} = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \\ -3 \end{bmatrix}$, and $\mathbf{u} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

b. 7

Exercise 4.3.6 Let P_0 be a point with vector \mathbf{p}_0 , and let ax + by + cz = d be the equation of a plane with normal $\mathbf{n} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$.

a. Show that the point on the plane closest to P_0 has vector \mathbf{p} given by

$$\mathbf{p} = \mathbf{p}_0 + \frac{d - (\mathbf{p}_0 \cdot \mathbf{n})}{\|\mathbf{n}\|^2} \mathbf{n}.$$

[*Hint*: $\mathbf{p} = \mathbf{p}_0 + t\mathbf{n}$ for some t, and $\mathbf{p} \cdot \mathbf{n} = \mathbf{d}$.]

- b. Show that the shortest distance from P_0 to the plane is $\frac{|d-(\mathbf{p}_0 \cdot \mathbf{n})|}{\|\mathbf{n}\|}$.
- c. Let P_0' denote the reflection of P_0 in the plane—that is, the point on the opposite side of the plane such that the line through P_0 and P_0' is perpendicular to the plane. Show that $\mathbf{p}_0 + 2\frac{d (\mathbf{p}_0 \cdot \mathbf{n})}{\|\mathbf{n}\|^2} \mathbf{n}$ is the vector of P_0' .

b. The distance is $\|\mathbf{p} - \mathbf{p}_0\|$; use part (a.).

Exercise 4.3.7 Simplify $(a\mathbf{u} + b\mathbf{v}) \times (c\mathbf{u} + d\mathbf{v})$.

Exercise 4.3.8 Show that the shortest distance from a point P to the line through P_0 with direction vector \mathbf{d} is $\frac{\|\overrightarrow{P_0P}\times\mathbf{d}\|}{\|\mathbf{d}\|}$.

Exercise 4.3.9 Let **u** and **v** be nonzero, nonorthogonal vectors. If $\boldsymbol{\theta}$ is the angle between them, show that $\tan \boldsymbol{\theta} = \frac{\|\mathbf{u} \times \mathbf{v}\|}{\mathbf{u} \cdot \mathbf{v}}$.

Exercise 4.3.10 Show that points A, B, and C are all on one line if and only if $\overrightarrow{AB} \times \overrightarrow{AC} = 0$

 $\|\overrightarrow{AB} \times \overrightarrow{AC}\|$ is the area of the parallelogram determined by A, B, and C.

Exercise 4.3.11 Show that points A, B, C, and D are all on one plane if and only if $\overrightarrow{AB} \cdot (\overrightarrow{AB} \times \overrightarrow{AC}) = 0$

Exercise 4.3.12 Use Theorem 4.3.5 to confirm that, if \mathbf{u} , \mathbf{v} , and \mathbf{w} are mutually perpendicular, the (rectangular) parallelepiped they determine has volume $\|\mathbf{u}\| \|\mathbf{v}\| \|\mathbf{w}\|$.

Because \mathbf{u} and $\mathbf{v} \times \mathbf{w}$ are parallel, the angle θ between them is 0 or π . Hence $\cos(\theta) = \pm 1$, so the volume is $|\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})| = \|\mathbf{u}\| \|\mathbf{v} \times \mathbf{w}\| \cos(\theta) = \|\mathbf{u}\| \|(\mathbf{v} \times \mathbf{w})\|$. But the angle between \mathbf{v} and \mathbf{w} is $\frac{\pi}{2}$ so $\|\mathbf{v} \times \mathbf{w}\| = \|\mathbf{v}\| \|\mathbf{w}\| \cos(\frac{\pi}{2}) = \|\mathbf{v}\| \|\mathbf{w}\|$. The result follows.

Exercise 4.3.13 Show that the volume of the parallelepiped determined by \mathbf{u} , \mathbf{v} , and $\mathbf{u} \times \mathbf{v}$ is $\|\mathbf{u} \times \mathbf{v}\|^2$.

Exercise 4.3.14 Complete the proof of Theorem 4.3.3.

Exercise 4.3.15 Prove the following properties in Theorem 4.3.2.

- a) Property 6
- b) Property 7
- c) Property 8

b. If $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}$, then $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \det \begin{bmatrix} \mathbf{i} & u_1 & v_1 + w_1 \\ \mathbf{j} & u_2 & v_2 + w_2 \\ \mathbf{k} & u_3 & v_3 + w_3 \end{bmatrix}$ $= \det \begin{bmatrix} \mathbf{i} & u_1 & v_1 \\ \mathbf{j} & u_2 & v_2 \\ \mathbf{k} & u_3 & v_3 \end{bmatrix} + \det \begin{bmatrix} \mathbf{i} & u_1 & w_1 \\ \mathbf{j} & u_2 & w_2 \\ \mathbf{k} & u_3 & w_3 \end{bmatrix}$ $= (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w}) \text{ where we used Exercise}$ 4.3.21.

Exercise 4.3.16

a. Show that $\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v}) = \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \mathbf{v} \times (\mathbf{w} \times \mathbf{u})$ holds for all vectors \mathbf{w} , \mathbf{u} , and \mathbf{v} .

b. Show that $\mathbf{v} - \mathbf{w}$ and $(\mathbf{u} \times \mathbf{v}) + (\mathbf{v} \times \mathbf{w}) + (\mathbf{w} \times \mathbf{u})$ are orthogonal.

b.
$$(\mathbf{v} - \mathbf{w}) \cdot [(\mathbf{u} \times \mathbf{v}) + (\mathbf{v} \times \mathbf{w}) + (\mathbf{w} \times \mathbf{u})] = (\mathbf{v} - \mathbf{w}) \cdot (\mathbf{u} \times \mathbf{v}) + (\mathbf{v} - \mathbf{w}) \cdot (\mathbf{v} \times \mathbf{w}) + (\mathbf{v} - \mathbf{w}) \cdot (\mathbf{w} \times \mathbf{u}) = -\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v}) + 0 + \mathbf{v} \cdot (\mathbf{w} \times \mathbf{u}) = 0.$$

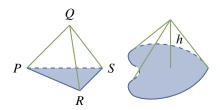
Exercise 4.3.17 Show $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \times \mathbf{v})\mathbf{w}$. [*Hint*: First do it for $\mathbf{u} = \mathbf{i}$, \mathbf{j} , and \mathbf{k} ; then write $\mathbf{u} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and use Theorem 4.3.2.]

Exercise 4.3.18 Prove the Jacobi identity:

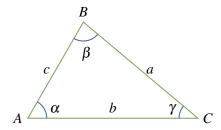
$$\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) + \mathbf{v} \times (\mathbf{w} \times \mathbf{u}) + \mathbf{w} \times (\mathbf{u} \times \mathbf{v}) = \mathbf{0}$$

[Hint: The preceding exercise.]

Exercise 4.3.19 Show that


$$(\mathbf{u} \times \mathbf{v}) \cdot (\mathbf{w} \times \mathbf{z}) = \det \begin{bmatrix} \mathbf{u} \cdot \mathbf{w} & \mathbf{u} \cdot \mathbf{z} \\ \mathbf{v} \cdot \mathbf{w} & \mathbf{v} \cdot \mathbf{z} \end{bmatrix}$$

[*Hint*: Exercises 4.3.16 and 4.3.17.]


Exercise 4.3.20 Let P, Q, R, and S be four points, not all on one plane, as in the diagram. Show that the volume of the pyramid they determine is

$$\frac{1}{6}|\overrightarrow{PQ}\cdot(\overrightarrow{PR}\times\overrightarrow{PS})|.$$

[*Hint*: The volume of a cone with base area A and height h as in the diagram below right is $\frac{1}{3}Ah$.]

Exercise 4.3.21 Consider a triangle with vertices A, B, and C, as in the diagram below. Let α , β , and γ denote the angles at A, B, and C, respectively, and let a, b, and c denote the lengths of the sides opposite A, B, and C, respectively. Write $\mathbf{u} = \overrightarrow{AB}$, $\mathbf{v} = \overrightarrow{BC}$, and $\mathbf{w} = \overrightarrow{CA}$.

- a. Deduce that $\mathbf{u} + \mathbf{v} + \mathbf{w} = \mathbf{0}$.
- b. Show that $\mathbf{u} \times \mathbf{v} = \mathbf{w} \times \mathbf{u} = \mathbf{v} \times \mathbf{w}$. [*Hint*: Compute $\mathbf{u} \times (\mathbf{u} + \mathbf{v} + \mathbf{w})$ and $\mathbf{v} \times (\mathbf{u} + \mathbf{v} + \mathbf{w})$.]
- c. Deduce the law of sines:

$$\frac{\sin\alpha}{a} = \frac{\sin\beta}{b} = \frac{\sin\gamma}{c}$$

Exercise 4.3.22 Show that the (shortest) distance between two planes $\mathbf{n} \cdot \mathbf{p} = d_1$ and $\mathbf{n} \cdot \mathbf{p} = d_2$ with \mathbf{n} as normal is $\frac{|d_2 - d_1|}{\|\mathbf{n}\|}$. Let \mathbf{p}_1 and \mathbf{p}_2 be vectors of points in the planes,

Let \mathbf{p}_1 and \mathbf{p}_2 be vectors of points in the planes, so $\mathbf{p}_1 \cdot \mathbf{n} = d_1$ and $\mathbf{p}_2 \cdot \mathbf{n} = d_2$. The distance is the length of the projection of $\mathbf{p}_2 - \mathbf{p}_1$ along \mathbf{n} ; that is $\frac{|(\mathbf{p}_2 - \mathbf{p}_1) \cdot \mathbf{n}|}{\|\mathbf{n}\|} = \frac{|d_1 - d_2|}{\|\mathbf{n}\|}$.

Exercise 4.3.23 Let A and B be points other than the origin, and let a and b be their vectors. If a and b are not parallel, show that the plane through A, B, and the origin is given by

$${P(x, y, z) \mid \begin{bmatrix} x \\ y \\ z \end{bmatrix} = s\mathbf{a} + t\mathbf{b} \text{ for some } s \text{ and } t}$$

Exercise 4.3.24 Let A be a 2×3 matrix of rank 2 with rows \mathbf{r}_1 and \mathbf{r}_2 . Show that

$$P = \{XA \mid X = [xy]; x, y \text{ arbitrary}\}$$

is the plane through the origin with normal $\mathbf{r}_1 \times \mathbf{r}_2$.

Exercise 4.3.25 Given the cube with vertices P(x, y, z), where each of x, y, and z is either 0 or 2, consider the plane perpendicular to the diagonal through P(0, 0, 0) and P(2, 2, 2) and bisecting it.

- a. Show that the plane meets six of the edges of the cube and bisects them.
- b. Show that the six points in (a) are the vertices of a regular hexagon.